rank-math-pro
domain was triggered too early. This is usually an indicator for some code in the plugin or theme running too early. Translations should be loaded at the init
action or later. Please see Debugging in WordPress for more information. (This message was added in version 6.7.0.) in /home/bilgipbp/public_html/wp-includes/functions.php on line 6114Python Yapay Zeka Kodlar\u0131<\/strong>; makine \u00f6\u011freniminde yeniyseniz veya kendi AI algoritmalar\u0131n\u0131z\u0131 olu\u015fturmak i\u00e7in\u00a0Scikit-learn<\/strong>\u00a0ve\u00a0NumPy\u2019yi<\/em>\u00a0<\/strong>nas\u0131l kullanaca\u011f\u0131n\u0131zla ilgileniyorsan\u0131z, do\u011fru yere geldiniz.\u00a0Bu makalede, Takviyeli \u00f6\u011frenme ve\u00a0Scikit-learn\u2019in temellerini<\/strong><\/em>\u00a0g\u00f6zden ge\u00e7irece\u011fiz ve bu kitapl\u0131klar\u0131n daha yayg\u0131n kullan\u0131mlar\u0131ndan baz\u0131lar\u0131n\u0131 ele alaca\u011f\u0131z.\u00a0Ayr\u0131ca, bu kitapl\u0131klar\u0131 kullanan uygulama \u00f6rneklerini \u00e7al\u0131\u015f\u0131rken de g\u00f6rebileceksiniz.<\/p>\n Scikit-learn<\/strong>, Python i\u00e7in a\u00e7\u0131k kaynakl\u0131 bir makine \u00f6\u011frenimi kitapl\u0131\u011f\u0131d\u0131r.\u00a0Mod\u00fclleri, makine \u00f6\u011frenimi, veri madencili\u011fi ve g\u00f6rselle\u015ftirme i\u00e7in algoritmalar i\u00e7erir.\u00a0Bu algoritmalar, destek vekt\u00f6r makineleri, DBSCAN ve k\u00fcmelemeyi i\u00e7erir.\u00a0Scikit-learn\u2019i kullanmak<\/strong><\/em>, makine \u00f6\u011frenimi modellerinin geli\u015fimini h\u0131zland\u0131r\u0131r.\u00a0\u0130ki pop\u00fcler bilimsel hesaplama \u00e7er\u00e7evesi olan NumPy ve Pandas ile b\u00fct\u00fcnle\u015fir.\u00a0Daha fazla bilgi i\u00e7in scikit-learn.org adresini ziyaret edin.<\/p>\n \u00dccretsizdir ve\u00a0BSD lisans\u0131<\/strong>\u00a0alt\u0131nda lisansl\u0131d\u0131r, bu da onu ticari olmayan uygulamalar i\u00e7in m\u00fckemmel bir se\u00e7im haline getirir.\u00a0Bir\u00e7ok yazar\u00a0scikit-learn\u2019e<\/strong>\u00a0<\/em>katk\u0131da bulunur ve bu onu mevcut en \u00e7ok y\u00f6nl\u00fc makine \u00f6\u011frenimi kitapl\u0131klar\u0131ndan biri yapar.\u00a0Bu algoritmalar h\u0131zl\u0131d\u0131r ve her t\u00fcrl\u00fc veriye \u00f6l\u00e7eklenebilir.\u00a0Ve k\u00fct\u00fcphane, g\u00fcvenilirli\u011fi ile de bilinir.\u00a0Kodun sa\u011flam ve hatas\u0131z oldu\u011fundan emin olmak i\u00e7in otomatik testler mevcuttur.<\/p>\n Scikit-learn \u00f6ncelikle\u00a0Python\u2019da<\/strong>\u00a0yaz\u0131lm\u0131\u015ft\u0131r.\u00a0Bununla birlikte, y\u00fcksek performansl\u0131 dizi i\u015flemleri ve do\u011frusal cebir ger\u00e7ekle\u015ftirmek i\u00e7in NumPy\u2019yi de yo\u011fun bir \u015fekilde kullan\u0131r.\u00a0Baz\u0131 \u00e7ekirdek algoritmalar, art\u0131r\u0131lm\u0131\u015f performans i\u00e7in Cython\u2019da yaz\u0131lm\u0131\u015ft\u0131r.\u00a0\u00d6rne\u011fin, destek vekt\u00f6r makineleri (SVM), LIBSVM, lojistik regresyon ve do\u011frusal destek vekt\u00f6r makineleri i\u00e7in bir\u00a0Cython sarmalay\u0131c\u0131<\/strong><\/em>\u00a0kullan\u0131larak uygulan\u0131r.\u00a0Ek olarak, Scikit-learn \u00e7ok say\u0131da Python kitapl\u0131\u011f\u0131 ile uyumludur.<\/p>\n Scikit-learn,<\/strong>\u00a0makine \u00f6\u011freniminin yan\u0131 s\u0131ra bir\u00e7ok sinirsel g\u00f6r\u00fcnt\u00fcleme veri analizi algoritmas\u0131 i\u00e7erir.\u00a0\u00d6rne\u011fin, nilearn, Melodic\u2019in concat-ICA\u2019s\u0131n\u0131n bir birle\u015fimi olan Concat-ICA algoritmas\u0131n\u0131 uygular.\u00a0Ek olarak, scikit-learn, verilere l1 d\u00fczenlile\u015ftirme uygulayan s\u00f6zl\u00fck \u00f6\u011frenimi de dahil olmak \u00fczere \u00e7e\u015fitli matris ayr\u0131\u015ft\u0131rma stratejileri \u00f6nerir.<\/p>\n \u00c7o\u011fu Python kitab\u0131,<\/strong>\u00a0zaten Python bilgisine sahip oldu\u011funuzu varsayarken, Scikit-learn Uzmanl\u0131\u011f\u0131, Scikit-learn\u2019i pratik bir \u015fekilde tan\u0131t\u0131r.\u00a0\u00dc\u00e7\u00fcnc\u00fc b\u00f6l\u00fcmden ba\u015flayarak, scikit-learn \u00f6\u011frenmeye ba\u015flayacaks\u0131n\u0131z.\u00a0Scikit-learn kitapl\u0131\u011f\u0131n\u0131 ad\u0131m ad\u0131m kapsar.\u00a0Bu, hem yeni ba\u015flayanlar hem de ileri d\u00fczey kullan\u0131c\u0131lar i\u00e7in harika bir kitap.\u00a0Kitap\u00a0Python<\/strong><\/em>\u00a0hakk\u0131nda biraz bilgi sahibi olsa da, k\u00fct\u00fcphaneyi en verimli \u015fekilde kullanmay\u0131 da \u00f6\u011fretiyor.\u00a0Python yorumlay\u0131c\u0131s\u0131n\u0131n yan\u0131 s\u0131ra kodlama i\u00e7in bir Jupyter not defteri kullanabilirsiniz.<\/p>\n Scikit-learn k\u00fct\u00fcphanesi<\/strong>\u00a0ayr\u0131ca \u00e7evrimi\u00e7i tahmin hizmetleri de sa\u011flar.\u00a0Bunlar\u0131 kullanarak modelinizi olu\u015fturabilir ve \u00e7al\u0131\u015ft\u0131rabilirsiniz.\u00a0Ard\u0131ndan, scikit-learn.com\u2019u kullanarak Cloud Storage\u2019a y\u00fckleyin.\u00a0Bir e\u011fitim i\u015fi g\u00f6nderirken, bir ortam de\u011fi\u015fkeninde paket ad\u0131n\u0131 belirtmeniz gerekir.\u00a0Son olarak, e\u011fitim ba\u015fvurunuzu paketleyebilir ve gcloud ai-platform i\u015flerini kullanarak\u00a0GCP platformu<\/strong>\u00a0<\/em>arac\u0131l\u0131\u011f\u0131yla g\u00f6nderebilirsiniz.<\/p>\n <\/p>\n Python\u2019da programlamaya<\/strong>\u00a0a\u015finaysan\u0131z, muhtemelen NumPy ile biraz deneyiminiz vard\u0131r.\u00a0Ancak NumPy \u00f6\u011frenmeye ba\u015flamadan \u00f6nce dilin veri bilimi ve matematik temellerini \u00f6\u011frenmenizde fayda var.\u00a0Resmi web sitesinde dilin s\u00f6zdizimine genel bir bak\u0131\u015f elde edebilirsiniz.\u00a0Ayr\u0131ca\u00a0NumPy<\/strong><\/em>\u00a0taraf\u0131ndan sunulan kitapl\u0131klar\u0131 ke\u015ffetmenize izin veren Matplotlib\u2019i indirip kurman\u0131z gerekecek.<\/p>\n \u00d6rne\u011fin, NumPy\u2019nin yay\u0131n i\u015flevi, yeni_gradelerdeki t\u00fcm \u00f6\u011felere kar\u015f\u0131 tek bir de\u011fer yay\u0131nlaman\u0131za olanak tan\u0131r.\u00a0Bunu yaparak, yeni kavisli hi\u00e7bir derecenin m\u00fckemmel puan\u0131 a\u015fmamas\u0131n\u0131 sa\u011flayabilirsiniz.\u00a0NumPy\u2019nin<\/strong><\/em>\u00a0bir\u00e7ok yerle\u015fik i\u015flevi vard\u0131r, bu nedenle yard\u0131m i\u00e7in belgelere ba\u015fvurmak iyi bir fikirdir.\u00a0Bu \u015fekilde, dilin yeteneklerini daha iyi anlayabilirsiniz.<\/p>\n Sinir a\u011flar\u0131 kurarken<\/strong>, \u00f6\u011frencilerin programlama hakk\u0131nda biraz arka plan bilgisine sahip olmalar\u0131 gerekir.\u00a0Matematiksel i\u015flemlerin vekt\u00f6rlere nas\u0131l uygulanaca\u011f\u0131n\u0131 \u00f6\u011frenmek, kullan\u0131\u015fl\u0131 bir AI sisteminin olu\u015fturulmas\u0131 i\u00e7in \u00e7ok \u00f6nemlidir.\u00a0NumPy<\/em><\/strong>\u00a0bu \u00e7abada \u00f6nemli bir ara\u00e7t\u0131r.\u00a0Dilin s\u00f6zdizimi esnektir ve kullan\u0131c\u0131n\u0131n komut dosyas\u0131 olu\u015fturma yakla\u015f\u0131m\u0131 ile OOP yakla\u015f\u0131m\u0131 aras\u0131nda se\u00e7im yapmas\u0131na olanak tan\u0131r.\u00a0Dili \u00f6\u011frenirken, kodunuzu kontrol etmek i\u00e7in bir IDE aras\u0131nda se\u00e7im yapabilirsiniz.<\/p>\n \u00c7o\u011funlukla NumPy<\/strong>, kullan\u0131c\u0131lar\u0131n tek bir veri k\u00fcmesinden \u00e7e\u015fitli veri k\u00fcmeleri olu\u015fturmas\u0131na olanak tan\u0131r.\u00a0Di\u011fer bir\u00e7ok kitapl\u0131\u011f\u0131n aksine NumPy, b\u00fcy\u00fck \u00f6l\u00e7\u00fcde verileri \u00f6zelle\u015ftirmenize olanak tan\u0131yan bir dizi t\u00fcr\u00fc kulland\u0131\u011f\u0131 i\u00e7in bir\u00e7ok bilimsel ve m\u00fchendislik g\u00f6reviyle de uyumludur.\u00a0\u00d6rne\u011fin, her veri sat\u0131r\u0131na bir s\u00fctun ad\u0131 veya t\u00fcr\u00fc atayabilirsiniz.\u00a0NumPy\u2019yi veri bilimi i\u00e7in kullanmak,\u00a0Python veri bilimcisi<\/strong>\u00a0olma yolculu\u011funuzun ilk ad\u0131m\u0131d\u0131r.<\/p>\n NumPy<\/strong>\u00a0g\u00fc\u00e7l\u00fc veri bilimi ara\u00e7lar\u0131 sunarken, s\u0131n\u0131rlamalar\u0131 vard\u0131r.\u00a0Bunlardan biri, \u00e7ok say\u0131da dize alan bir i\u015flevi kullanman\u0131n zor olmas\u0131d\u0131r.\u00a0Veri k\u00fcmenizde \u00e7ok say\u0131da dize varsa,\u00a0NumPy\u2019nin<\/em><\/strong>\u00a0otomatik boyut alg\u0131lamas\u0131 \u00e7al\u0131\u015fmaz.\u00a0Ve bundan emin de\u011filseniz, daha fazlas\u0131n\u0131 \u00f6\u011frenmek i\u00e7in NumPy belgelerini okuyun.\u00a0Ancak bu \u00f6nemli bir dezavantaj de\u011fildir.<\/p>\n Python yapay zeka kitapl\u0131\u011f\u0131<\/strong>\u00a0NumPy, girdi vekt\u00f6rlerini diziler olarak temsil etmenin bir yolunu sa\u011flar.\u00a0Tek boyutlu diziler elektronik tablolara benzerken, d\u00f6rt boyutlu diziler daha karma\u015f\u0131kt\u0131r ve g\u00f6rselle\u015ftirilmesi zor olabilir.\u00a0\u00c7ok boyutlu dizileri kullan\u0131rken verilerin \u015feklini g\u00f6z \u00f6n\u00fcnde bulundurmak isteyece\u011finizi unutmamak \u00f6nemlidir.\u00a0NumPy<\/em>, girdi vekt\u00f6r\u00fcyle ayn\u0131 \u015fekle sahip olan demeti belirlemek i\u00e7in \u00e7e\u015fitli y\u00f6ntemler sa\u011flar.<\/p>\n Diziler, bilimsel, matematiksel ve istatistiksel hesaplaman\u0131n temel bir par\u00e7as\u0131d\u0131r.\u00a0Y\u00fcksek performansl\u0131 dizi hesaplama, b\u00fcy\u00fck \u00f6l\u00e7ekli veri i\u015fleme i\u00e7in \u00e7ok \u00f6nemlidir.\u00a0Python<\/strong>, \u00fcretken say\u0131sal hesaplama ve veri analiti\u011fi i\u00e7in tercih edilen dildir.\u00a0Bir sonraki projeniz i\u00e7in Python kullan\u0131yorsan\u0131z, dilin matematik ve makine \u00f6\u011frenimi i\u015flevlerini \u00f6\u011frenmeyi d\u00fc\u015f\u00fcn\u00fcn.\u00a0NumPy<\/em>, say\u0131sal hesaplama ve veri analiti\u011fi i\u00e7in fiili standart kitapl\u0131kt\u0131r.\u00a0NumPy ad\u0131 verilen dilin kapsaml\u0131 matematiksel i\u015flevler kitapl\u0131\u011f\u0131, daha y\u00fcksek h\u0131z ve verimlilikle karma\u015f\u0131k matematik hesaplamalar\u0131 yapman\u0131z\u0131 sa\u011flar.<\/p>\nPython Yapay Zeka Kodlar\u0131: Scikit-\u00f6\u011fren<\/h2>\n
Python Yapay Zeka Kodlar\u0131: NumPy<\/h3>\n